

FEATURES

1. Approx. $1 / 2$ the space compared with the mounting of a set of 1 Form A and 1 Form B photoMOS relays
2. Applicable for 1 Form A 1 Form B use as well as two independent 1 Form A and 1 Form B use
3. Low thermal electromotive force (Approx. $1 \mu \mathrm{~V}$)
4. Eliminates the need for a counter electromotive force protection diode in the drive circuits on the input side
5. Controls load currents up to 0.13 A with an input current of 5 mA with load voltage of 400 V
6. High speed switching: operate time of $300 \mu \mathrm{~s}$ typical.
7. Eliminates the need for a power supply to drive the power MOSFET
8. Extremely low closed-circuit offset voltages to enable control of small analog signals without distortion (Typical 100 pA at 400 V)
9. Stable on resistance

TYPICAL APPLICATIONS

- High-speed inspection machines
- Telephone equipment
- Computer

TYPES

Type	Output rating*		Part No.				Packing quantity	
	Load voltage	Load current	Through hole terminal	Surface-mount terminal				
			Tube packing style		Tape and ree	packing style	Tube	Tape and reel
					Picked from the 1/2/3-pin side	Picked from the 4/5/6-pin side		
AC/DC type	400 V	100 mA	AQW614	AQW614A	AQW614AX	AQW614AZ	1 tube contains 40 pcs. 1 batch contains 400 pcs.	1,000 pcs.

*Indicate the peak AC and DC values.
Note: For space reasons, the SMD terminal shape indicator "A" and the package type indicator " X " and " Z " are omitted from the seal.

RATINGS

1. Absolute maximum ratings (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item		Symbol	AQW614(A)	Remarks
Input	LED forward current	I_{F}	50 mA	
	LED reverse voltage	$V_{\text {R }}$	5 V	
	Peak forward current	IfP	1 A	$\mathrm{f}=100 \mathrm{~Hz}$, Duty factor $=0.1 \%$
	Power dissipation	Pin	75 mW	
Output	Load voltage	V ${ }_{\text {L }}$	400 V	
	Continuous load current	IL	0.1 A (0.13 A)	Peak AC, DC (): in case of using only 1a or 1b, 1 channel
	Peak load current	$l_{\text {peak }}$	0.3 A	100 ms (1 shot), $\mathrm{V}_{\mathrm{L}}=\mathrm{DC}$
	Power dissipation	Pout	800 mW	
Total power dissipation		$\mathrm{P}_{\text {T }}$	850 mW	
I/O isolation voltage		$\mathrm{V}_{\text {iso }}$	1,500 V AC	Between input and output/between contact sets
Temperature limits	Operating	Topr	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$	Non-condensing at low temperatures
	Storage	$\mathrm{T}_{\text {stg }}$	$-40^{\circ} \mathrm{C}$ to $+100^{\circ} \mathrm{C}-40^{\circ} \mathrm{F}$ to $+212^{\circ} \mathrm{F}$	

GU PhotoMOS (AQW614)

2. Electrical characteristics (Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$)

Item			Symbol	AQW614(A)	Condition
Input	LED operate (OFF) current	Typical	$\begin{aligned} & \text { IFon (N.O.) } \\ & \text { IFoff (N.C.) } \end{aligned}$	0.9 mA	$\mathrm{LL}=100 \mathrm{~mA}$
		Maximum		3 mA	
	LED reverse (ON) current	Minimum	$\begin{aligned} & \text { IFoff (N.O.) } \\ & \text { IFon (N.C.) } \end{aligned}$	0.4 mA	$\mathrm{LL}=100 \mathrm{~mA}$
		Typical		0.8 mA	
	LED dropout voltage	Typical	V_{F}	$1.25 \mathrm{~V}\left(1.14 \mathrm{~V}\right.$ at $\left.\mathrm{I}_{F}=5 \mathrm{~mA}\right)$	$\mathrm{IF}=50 \mathrm{~mA}$
		Maximum		1.5 V	
Output	On resistance	Typical	Ron	27Ω	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}(\mathrm{~N} . \mathrm{O} .) \\ & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}(\mathrm{~N} . \mathrm{C} .) \\ & \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA} \end{aligned}$ within 1 s on time
		Maximum		50Ω	
	Off state leakage current	Maximum	ILeak	$1 \mu \mathrm{~A}$	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=0 \mathrm{~mA}(\mathrm{~N} . \mathrm{O} .) \\ & \mathrm{I}_{\mathrm{F}}=5 \mathrm{~mA}(\mathrm{~N} . \mathrm{C} .) \\ & \mathrm{V}_{\mathrm{L}}=400 \mathrm{~V} \end{aligned}$
Transfer characteristics	Operate (OFF) time*	Typical		0.28 ms (N.O.) 0.43 ms (N.C.)	$\begin{aligned} & \mathrm{I}_{F}=0 \mathrm{~mA} \rightarrow 5 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA} \end{aligned}$
		Maximum		1 ms	
	Reverse (ON) time*	Typical	$\begin{aligned} & \mathrm{T}_{\text {off (N.O.) }} \\ & \mathrm{T}_{\text {on (N.C. }} \text { (N.C } \end{aligned}$	0.04 ms (N.O.) 0.3 ms (N.C.)	$\begin{aligned} & \mathrm{I}_{F}=5 \mathrm{~mA} \rightarrow 0 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{L}}=100 \mathrm{~mA} \end{aligned}$
		Maximum		1 ms	
	I/O capacitance	Typical	Ciso	0.8 pF	$\begin{aligned} & \mathrm{f}=1 \mathrm{MHz} \\ & \mathrm{~V}_{\mathrm{B}}=0 \mathrm{~V} \end{aligned}$
		Maximum		1.5 pF	
	Initial I/O isolation resistance	Minimum	Riso	$1,000 \mathrm{M} \Omega$	500 V DC

Note: Recommendable LED forward current $\mathrm{IF}_{\mathrm{F}}=5 \mathrm{~mA}$.
*Operate/Reverse time

REFERENCE DATA

1. Load current vs. ambient temperature characteristics
Allowable ambient temperature: $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ $-40^{\circ} \mathrm{F}$ to $+185^{\circ} \mathrm{F}$

2. On resistance vs. ambient temperature characteristics
Measured portion: between terminals 5 and 6, 7 and 8 ;
LED current: 5 mA ; Load voltage: 400 V (DC);
Continuous load current: 100 mA (DC)

3. Operate (OFF) time vs. ambient temperature characteristics
LED current: 5 mA ;
Load voltage: 400 V (DC);
Continuous load current: 100 mA (DC)

GU PhotoMOS (AQW614)

4. Reverse (ON) time vs. ambient temperature characteristics
LED current: 5 mA ; Load voltage: 400 V (DC); Continuous load current: 100 mA (DC)

5. LED dropout voltage vs. ambient temperature characteristics
LED current: 5 to 50 mA

6. Operate (OFF) time vs. LED forward current characteristics
Measured portion: between terminals 5 and 6, 7 and 8; Load voltage: 400 V (DC); Continuous load current: 100 mA (DC); Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

7. LED operate (OFF) current vs. ambient temperature characteristics
Load voltage: 400 V (DC);
Continuous load current: 100 mA (DC)

8. Current vs. voltage characteristics of output at MOS portion
Measured portion: between terminals 5 and 6, 7 and 8; Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

9. Reverse (ON) time vs. LED forward current characteristics
Measured portion: between terminals 5 and 6, 7 and 8 Load voltage: 400 V (DC); Continuous load current: 100 mA (DC); Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

10. LED reverse (ON) current vs. ambient temperature characteristics
Load voltage: 400 V (DC);
Continuous load current: 100 mA (DC)

11. Off state leakage current vs. load voltage characteristics
Measured portion: between terminals 5 and 6, 7 and 8; Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

12. Output capacitance vs. applied voltage characteristics
Measured portion: between terminals 5 and 6, 7 and 8; Frequency: 1 MHz ;
Ambient temperature: $25^{\circ} \mathrm{C} 77^{\circ} \mathrm{F}$

